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 A novel control structure for designing a PID load frequency controller for 
power systems is presented. The controller with a single tuning parameter is 
designed based on a desired closed-loop complementary sensitivity function 
and Pade approximation. Comparative analysis demonstrates that proposed 
PID controllers improves the settling time and reduces overshoot effectively 
against small step load disturbances. Also, the performance and robustness of 
the controllers have been analyzed and compared. Simulation results show 
significantly improved performances when compared with recent results. Keywords: 
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1. INTRODUCTION  

Frequency deviation in Power System due to variation between generation and load shall be 
rectified within a fraction of seconds resulting in stability and security. Load Frequency Control (LFC) of an 
extensive power framework can be alluded as the issue of controlling the recurrence by directing the created 
units with reaction to change in stack [1]. For framework soundness, LFC must furnish recurrence with zero 
enduring state mistakes and tie-line trade varieties, high damping of recurrence motions and diminishing 
overshoot of the unsettling influence. The objectives specified are conveyed effectively in past works by 
various creators utilizing Fuzzy rationale PI and PID controllers [2, 3], ideal control [4, 5]. Variable structure 
control [6, 7], versatile and self-tuning control [8, 9]. Down the line, different tuning rules have picked up the 
consideration for the previously mentioned goals in which Internal Model Control (IMC) [10] is one among 
them. The LFC PID controller configuration utilizing Laurent arrangement is clarified by Padhan and  
Majhi [11]. Double PI controller tuning utilizing swam enhancement calculation is introduced in [12]. The 
two-degree-of-freedom internal model control scheme suggested by Tan [10] consists of two controllers with 
two tuning parameters where simultaneous tuning of the two parameters is difficult. In practice, a simple 
control structure with a fewer number of tuning parameters is desirable. The proposed control structure (see  
Figure 1) for LFC design consists of only one controller (Gc). Kasireddy et.al designed a PID controller for 
LFC through reduced model order [13]. 
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Figure 1. Proposed control structure 
 
 

In Figure 1, G and Gme−θm represent the power system dynamics and its model, respectively. For 
LFC, controller design is inconvenient because G results in higher order plant models, which are 
approximated by lower order transfer functions with time delay using a relay-based identification method.  

This paper has been alienated into 6 sections. Modeling of power system dynamics with necessary 
derivations discourse in section 2. In section 3, the PID controller design method is discussed followed by 
Section 4 in which the simulation results are presented. Section 5 deals with Robustness analysis and 
performance of a power system using Kharitonov’s rectangles followed by conclusions in section 6. 
 
 
2. MODELING OF POWER SYSTEM DYNAMICS  

Figure 2 shows single area power systems with a linear model. From Figure 2 it can be noticed that 
the power is supplied to the single area by a single generator. There are two types of turbine used for a 
generation: (a) non-reheated (NRT) and reheated (RT). 
 
 

 
 

Figure 2. Single area power system 
 
 
The plant model used for LFC without droop characteristics is 
 

g t pG = G G G           (1) 

 
Where Gg, Gt, and Gp are the dynamics of the governor, turbine, and load & machine, respectively. For a 
reheated turbine, 
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Where Tr is a constant and c is the portion of the power generated by the reheat turbine in the total generated 
power. For non-reheated turbine Tr = 0. The plant model used for LFC with droop characteristic is 
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From (1) and (2) can be represented by the second-order transfer function model 
 



Int. J. of Adv. in Appl. Sci. ISSN: 2252-8814  
 

Enhanced performance of PID load frequency controller for power systems (Dola Gobinda Padhan) 

119

  
ms

1 2

ke
G = 

T s 1 T s 1



 
        (3) 

 
State space equations in the Jordan canonical form become 

 

mx(t) Ax(t) bu(t )            (4) 

 
y(t) cx(t)          (5) 
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When a relay test is performed with symmetrical relay of height ±h, then the expression for the limit cycle 
output for 0 ≤ t ≤ θm is 
 

 At 1 Aty(t) ce x(0) cA e I bh          (6) 

 
Let the half period of the limit cycle output be τ. Then the expression for the limit cycle output for  
θm ≤ t ≤ τ is 

 

 m mA( t ) A(t )1
my(t) ce x( ) cA e I bh           (7) 

 
The condition for a limit cycle output can be written as 

 
y(0) cx(0) y( ) 0             (8) 

 
Substitution of t = τ in (7) and use of (6) gives the initial value of the cycling states 

 

   m
1 A( )A 1 Ax(0) I e A 2e e I bh
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When tp is the time instant at which the positive peak output occurs and tp ≥ θm, then the expression of the 
peak output Ap becomes 

 

  p m p mA(t ) A(t )1
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and the expression for the peak time becomes 
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Substitution of A, b, and c in (9) and (10) give 

 

     2 m 1 1 1 m 2 2/T ( )/T /T /T ( )/T /T
1 2T 1 e 2e e 1 T 1 e 2e e 1 0                (12) 

 

   
1 2

1 21 2 1 2

T T
/T /TT T T T

pA kh 2 1 e 1 e 1


  
 

     
 

     (13) 
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The (11-13) are solved simultaneously to estimate θm, T1 and T2 from the measurements of , Ap 
and tp. The relentless state gain k is thought to be known from the earlier or can be assessed from a stage flag 
test. Care has been taken to explain the arrangement of non-direct conditions, so intermingling may not occur 
to a false arrangement. 
 
 
3. PID CONTROLLER DESIGN  

The nominal complementary sensitivity function for load disturbance rejection can be obtained as 
 

c

c

GG
T = 

1 GG
         (14) 

 
To reject a step change in the load of the power system, the asymptotic constraint should be satisfied 

so that the closed loop internal stability can be achieved [3]. 
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The desired closed-loop complementary sensitivity function is proposed as 
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Where β is the only tuning parameter for obtaining the desired performance of the power system. As 

there always exists a trade-off between the nominal performance and robust performance, β must be tuned 
according to the desired choice. α1 and α2 can be obtained from (15) and the constraint as 
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Using (14), (15) and second order Pade´ approximation for the time delay term, we get 
 

  2 2
2 1 2 1

c

22 1
o

o o

6 s s 1 l s l s 1
G

m m
km s s s 1

m m

     


 
  

 

       (18) 
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The (18) can be written in the form of a PID controller with lead/lag filter as 
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4. SIMULATION RESULTS  

Consider a power system with a non-reheated and a reheated turbine whose model parameters are 
given by KP = 120, TP = 20, TT = 0.3, TG = 0.08, R = 2.4, Tr = 4.2 and c = 0.35 [11]. The identified models 
and controller settings (see Table 1) for the power system with non-reheated and reheated turbines are 
obtained using (11-13, 17). The Nyquist plots of the identified and actual models are shown in Figure 4 to 
illustrate the accuracy of the identification method. To get stable and robust response, β values in Table 1 are 
obtained from extensive simulation studies. Figure 3 and Figure 5 show the frequency change of the power 
system following a load demand ΔPd = 0.01. The stability robustness is tested by changing the parameters of 
the system by 50%. From the simulation results, it is evident that the proposed method gives significantly 
improved performances than the Tan’s method. 
 
 

Table 1. Control parameters for identified model 
Model Type Identified Model Control Parameters 

NRT (WD)   


 

0.4626s120e

28.4952s 1 0.2202s 1
 Kc=2.0245, Ti=0.5005, Td=0.1332, a1=29.0238, 

a2=15.1661, b1=28.6982, b2=5.77239, β=0.01 

NRT (D) 


 

0.05s

2

250e

2.028s 12.765s 106.2
 

Kc=0.7192, Ti=0.2075, Td=0.1159, a1=0.9212, 
a2=0.1411, b1=0.1515, b2=0.0234, β=0.07 

RT (WD)   


 

0.541s120e

23.2137s 1 0.9057s 1
 Kc=3.6549, Ti=0.5797, Td=0.2355, a1=24.4801, 

a2=29.7725, b1=24.0884, b2=20.2681, β=0.01 

RT (D) 


 

0.035s

2

235.3e

1.79s 16.9s 100
 

Kc=1.0619, Ti=0.2107, Td=0.1828, a1=1.154, 
a2=0.1323, b1=0.1973, b2=0.0231, β=0.065 

 
 

 
 

(a) Nominal systems 
 

 
 

(b) Parameters of the system change by 50% 
 

Figure 3. Frequency deviation of the closed loop system with non-reheated turbine 
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Figure 4. Nyquist plots for the power system with non-reheated turbine 
 
 

 
 

Figure 5. Frequency deviation of the closed loop system with reheated turbine 
 
 
5. ROBUSTNESS ANALYSIS AND PERFORMANCE 

In this section, Robustness of the system has been analyzed using Kharitonov’s Theorem. Closed-
loop characteristic equation CL (s) and denominator of the closed-loop transfer function T(s) are the 

polynomials that make the control system stable. Considering the forward-path and feedback-path transfer 
functions G(s) and H(s), characteristic equation is 

 

CL (s) = 1+G(s)H(s) = 0 
n n 1

CL n n 1 1 0(s) a s a s ...... a s a
            (20) 

 
For simplicity, assume that the leading coefficient an is constant and the coefficients have been normalized so 
that an = 1. The polynomial coefficients can then be expressed as 
 

min max
i i ia a ,a ,        i=0,1.......n-1          (21) 

 
so, the characteristic equation becomes 
 

n n 1
CL n 1 1 0(s) s a s ...... a s a

     
      (22)
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According to Kharitonov’s Theorem, an nth-degree interval polynomial family described by  
(1a) and (1b) is robustly stable if and only if each of the four Kharitonov polynomials is stable, that is, all the 
roots of those polynomials have strictly negative real parts. 
 
For the system 

 

     
120

G(s)
0.08s 1 0.3s 1 20s 1


  

 
 
The characteristic equation is 
 

3 2
CL(s) 0.48s 7.624s 20.38s 121 0           (23) 

 
For ±10% variations in the coefficients of the polynomial, The intervals of the polynomial will become 
 

3 2 1 0a 0.528,0.432       a 8.3864,6.8616       a 22.418,18.342       a 133.1,108.9                          

 
Figure 6 shows Kharitonov’s rectangles rotate around the origin in a counter-clockwise direction to 

satisfy the monotonic phase increase property of Hurwitz polynomials. For clarity, the graph is zoomed in 
Figure 7 to show the zero-exclusion point. As the Kharitonov’s rectangles do not pass through the origin, it is 
concluded that the closed loop system guarantees the robust stability. 
 
 

 
 

Figure 6. Response of the system with ±10% variations in the coefficients of  
polynomial on the complex plane 

 
 

 
 

Figure 7. Response of the system showing zero exclusion point 
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Table 2 shows it is observed that the proposed method gives less Integral Absolute Error (IAE), 
Integral Squared Error (ISE) and Integral Time Absolute Error (ITAE) as compared to Tan’s method, so 
closed loop performance is improved. If we compare the total variations of the control signals, the results of 
both methods are almost same. Thus, with same control signals, the proposed method gives comparatively 
fewer errors. 

 
 

Table 2. Various errors and total variations 

Type of Model 
Integral Time 
Absolute Error 

Integral Absolute 
Error 

Integral Squared 
Error 

Total variations 

NRT (WD)-Tan 0.5164 0.1061 0.001494 0.0199 
NRT (WD)-Proposed 0.5147 0.1008 0.001184 0.0127 

NRT (D)-Tan 0.5303 0.106 0.001363 0.0214 
NRT (D)-Proposed 0.521 0.1007 0.001175 0.0189 

RT (WD)-Tan 2.002 0.2007 0.002254 0.0735 
RT (WD)-Proposed 2.058 0.2061 0.002273 0.07906 

RT (D)-Tan 2.006 0.2007 0.01223 0.0729 
RT (D)-Proposed 1.966 0.2006 0.002264 0.0797 

 
 
6. CONCLUSION 

The Load Frequency Characteristics of a single-area power system with non-reheated and reheated 
turbines have been deliberated. The proposed method is flexible and gives satisfactory performance in 
nominal as well as the perturbed case. The proposed PID controller with a new control structure and a single 
tuning parameter (β) gave better performance than Tan’s controller. By showing the zero exclusion point by 
Kharitonov’s rectangles, it guarantees the robust stability for closed loop power systems. The proposed 
scheme can easily be extended to multi-area power systems. 
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